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Implementation of Template-Based Image Registration
for Aerodynamic Testing
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Euclidean Optics Inc., Tullahoma, Tennessee 37388-6471

A mathematical model is described that underlies image registration of digital images of
test articles in aerodynamic testing, in which registration targets are used to establish the
relationship between 2D image coordinates and 3D model coordinates. Specifically, it is shown
how search templates can be computed for individual targets, and how these templates can
be used to perform subpixel localization of the desired image features through correlation
matching.

I. Introduction

MANY optical techniques are currently of interest for application in aerodynamic testing. For example, in
Ref. 1 it was shown how, at the Arnold Engineering Development Center (AEDC), on-line processing of

pressure-sensitive paint (PSP) images has been accomplished through developments in software, hardware, and data
reduction strategies. It is the purpose of the present paper to document an essential element of such automated
processing, namely the use of search templates for finding registration targets in the hundreds or thousands of
images that are acquired during a typical test. A detailed theoretical treatment of the use of such templates has been
presented previously,2,3 and it has been demonstrated experimentally that a registration uncertainty better than 0.1
image pixels can be achieved with typical research equipment.3 What has not been published so far is the algorithm
for calculation of the search templates, except in the sense that a former (more elaborate) version of this work
was presented previously as a conference paper.4 For a broader introduction to the challenge of processing PSP
images, the reader is referred elsewhere.1,5–7 This paper addresses specifically the calculation of search templates for
correlation matching, a scheme that is also applicable to many other optical techniques that are currently of interest
for wind-tunnel testing.8−10

II. The Image Registration Challenge
Figure 1 shows an image of a painted F-16 fighter jet model, acquired during a PSP test. Visible in the image are

circular registration targets that serve to establish the relationship between 2D image coordinates and 3D model coor-
dinates. Figure 2 shows a schematic of the registration algorithm that is described in Ref. 1:A set of tunnel parameters,
including model attitude angles, is used to estimate the position and orientation of the sting-mounted test article with
respect to the test facility (block 1 in Fig. 2). When combined with a set of calibration parameters for each camera,
this allows a set of mapping coefficients to be calculated (block 2 in Fig. 2) that describe, for any registration target
i, the relationship between its 3D model coordinates, xi , and the resulting image coordinates, (ui, vi), expressed in
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Fig. 1 Image of F-16 test article with registration targets.

image pixels. This relationship may be written symbolically as1

(ui, vi) = F̃ (xi ) (1)

The model coordinates xi of the registration targets are typically obtained prior to the test, for example, using a
coordinate measuring machine. It is then possible to calculate a search template for each target (block 3 in Fig. 2),
allowing each target to be located in the image (block 6 in Fig. 2). Optionally, if a 3D grid of the test article is available
(this is typical in PSP measurements), a visibility check can be performed to prevent the algorithm from searching
for targets that are occluded (blocks 4 and 5 in Fig. 2). Even so, it is possible that some targets are not found. This
is generally not a problem. Once the search for all targets has been completed, a least squares fit is performed that
involves the image coordinates of all of the registration targets that were found, to arrive at an updated mapping
function F (block 7 in Fig. 2).7,11

In the following, it is assumed that a reasonable estimate of the mapping function F [denoted with a tilde in
Eq. (1)] is available to serve as a starting point for the image registration task.4 The challenge of finding a particular
target, i, in an image may then be illustrated by Fig. 3, which shows a detail view of a black, round, registration
target, which is rendered as a group of darkened image pixels against a light background, with an actual center at
point A, an initial position estimate at point B, and a non-digitized elliptical outline that would, in order to be fully
resolved (which it never is), require a spatial resolution far greater than the actual resolution in the digital image.

Given the search template, the task of finding the actual location of the registration target in the image involves
stepping the search template across the image in the vicinity of the predicted location, finding a point of maximum
correlation, and subpixel refinement involving two derivate templates. This is explained in detail in Refs. 2 and 3 and
reviewed briefly in Section IV. What is not covered in Refs. 2 and 3 is the actual computation of the search templates.
This is the subject of Section III.

Fig. 2 Image registration flow diagram.
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Fig. 3 Illustration of use of search template.

III. Calculation of Search Templates
Figure 4 shows a possible search template for the image feature from Fig. 3. The template consists of an array

of occupied pixel fractions, given a pre-selected subpixel placement of the target center. This template is stepped
across the image in one pixel increments, in the vicinity of the predicted target location, to find a point of maximum
correlation. In this way, the actual location of the target in the image is established to a resolution of one image pixel.
This technique is well established in the field of image processing.12,13 As is shown in Refs. 2 and 3, refinement
of this centering scheme to subpixel uncertainty is possible by augmentation of the conventional search template
with two derivative templates. These are shown in Fig. 5, for the case of the template from Fig. 4. Essentially, the
derivative templates give the change in occupied pixel fractions from Fig. 4 for an infinitesimal (i.e., subpixel) shift
of the template, as explained below.

Let us now turn to the calculation of the templates. For some target i, let {xij } denote a set of n points on the
perimeter of the target, with j = 1, . . . , n. Typical values of n are 45 or 90. For a circular target with radius ri and
position xi in model space, the target may be approximated as an n-sided regular polygon with perimeter points {xij }

Fig. 4 Example of conventional search template.

Fig. 5 Augmented templates corresponding to Fig. 4.
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Fig. 6 Geometry for calculating perimeter points of circular template.

given by:

xij = xi + r ′
i

[
li cos

(
2πj

n

)
+ mi sin

(
2πj

n

)]
(2)

where li and mi are unit tangent vectors at the surface of the target at point xi (see Fig. 6) and r ′
i is the radius of the

target, with a correction factor applied to render the surface area of the n-sided regular polygon equal to that of the
actual target. That is

r ′
i = ri

[
2π/n

sin(2π/n)

]1/2

(3)

For n = 45 or n = 90, the correction factor from Eq. (3) is practically negligible, but in calculations in which speed
is of the essence, it can be imagined that a much smaller value of n would be used, while sacrificing centering
uncertainty. The specific choice of tangent vectors li and mi in Eq. (2) and Fig. 6 is not important, so long as the two
are orthogonal, that is, (li • mi ) = 0, and their vector product is equal to the surface normal, ni , of the target, that is,
ni = li × mi . Implicit in Eq. (2) is the assumption that the surface is flat on the scale of the target.

Using Eq. (1), a corresponding set of n image coordinates (uij , vij ) may be calculated for the n spatial coordinates
xij . By interpolation, this set of projected perimeter points can be expanded into a K-sided polygon (with K > n),
such that each line segment is contained inside a single image pixel (see Fig. 7). Let (uk−1, vk−1) and (uk, vk) be the
end points of the k-th line segment, with (u0, v0) = (uK, vK), and let (pk, qk) denote the coordinate indices of the
pixel in which the k-th line segment is contained. The partial contribution of line segment k to the occupied pixel
fraction f0(pk, qk) is then given by the trapezoidal area

�f0k(pk, qk) = (uk−1 − uk)

(
vk + vk−1

2
− qk

)
(4)

This is not the only contribution to the template for this line segment. Rather, imagine that the k-th line segment
contributes area fractions to the entire column of pixels shaded in Fig. 7. For pixels with vertical index q < qk , these

Fig. 7 Calculation of template from polygonal curve.
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area fractions are given by

�f0k(pk, q) = uk−1 − uk, q < qk (5)

The fractional contributions from Eqs. (4) and (5) can be either positive (at the top of the loop in Fig. 7) or negative
(at the bottom of the loop). However, when contributions are summed for all line segments k, the resulting occupied
pixel fractions for all pixels (p, q) will be nonnegative, provided the projected outline of the target is traversed in
counter-clockwise direction. Specifically, the resulting occupied pixel fraction for a pixel (p, q) may be calculated
as the sum

f0(p, q) =
∑

k∈(p,q)

qk∑
q ′=qmin

�f0k(pk, q
′) (6)

where qmin represents the lowest value of q that is of interest in the calculation of the template.
To calculate the derivative templates from Fig. 5, observe that, in Fig. 4, the change in the fractional contribution

�f0k for pixel (pk, qk) due to an infinitesimal shift δu of the template along the u-axis is given by (vk − qk)δu as is
illustrated by the shaded area in Fig. 8a. If, instead of the left side of the trapezoidal area element being aligned with
a pixel edge, the right side were aligned with an edge (see Fig. 8b), the change in area would be −(vk−1 − qk)δu.
For a general element k, the fractional change in the occupied pixel fraction �f0k due to a shift of the template along
the horizontal image axis thus gives rise to the following fractional contribution to the derivative template fu

�fuk(pk, qk) = θk(vk − qk) − θk−1(vk−1 − qk) (7)

Here the values of the factors θ are either 1 or 0, depending on whether the corresponding values of uk and uk−1 are or
are not aligned with a pixel edge, respectively. Likewise in Fig. 7, a displacement of the template by an infinitesimal
shift δv in the vertical direction (see Fig. 8c) would change the area fraction of the trapezoidal element �f0k by
an amount (uk−1 − uk)δv. The partial contribution of line segment k to the derivative template fv can thus be
calculated as

�fvk(pk, qk) = uk−1 − uk (8)

The resulting augmented template values fu and fv are found by summing the fractional contributions of all line
elements, giving

fλ(p, q) =
∑

k∈(p,q)

�fλk(pk, qk), λ = u, v (9)

These values are in the range −1 to +1 for each pixel (see Fig. 5). The reader may confirm that the same set of
template values fu is obtained if, in Eq. (7), the factors θ (and hence the factors qk) are omitted, yielding the simplified
expression

�f ′
uk(pk, qk) = vk − vk−1 (10)

The reason that Eq. (10) sums to the same result in Eq. (9) is that, to the extent that Eq. (10) is no longer strictly the
rate of change of the occupied pixel fraction �f0k for a horizontal shift of the template, the “error” in this fractional
shift is canceled out by an equal and opposite error for one or more other elements k that are located inside the same
pixel (pk, qk).

Fig. 8 Calculation of augmented terms from infinitesimal shifts of template.
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Another “proof” for the correctness of Eq. (10) is to observe that, instead of column summing in Eq. (6) and
Fig. 7, row-summing might be used, which would interchange the roles of the horizontal and vertical indices. By this
symmetry argument, the partial contributions in Eqs. (8) and (10) must, indeed, be expressable in equivalent fashion.

The algorithm for the calculation of the search templates can now be summarized as follows: (1) Calculate the
projected target perimeter points from Eqs. (1)–(3) and interpolate the connecting line segments on pixel boundaries;
(2) Select a rectangular area of pixels that encloses this projection; (3) Initialize the three templates (f0, fu, and fv)
to zero; (4) Add, for each perimeter segment k, the following contributions to the templates: (4a) the fraction �f0k

from Eq. (5) for pixel (pk, qk); (4b) the fractions �f0k from Eq. (6) for pixels (pk, q) with q < qk; (4c) the fractions
�f ′

uk from Eq. (9) for pixel (pk, qk); and (4d) the fractions �fvk from Eq. (8) for pixel (pk, qk). Note the remarkable
efficiency of this algorithm, in that only a single multiplication [from Eq. (4)] is required for each line segment.

As a final comment on the calculation of the search templates: In principle (as suggested by a reviewer), the
occupied pixel fractions might be calculated analytically. This is possible (though cumbersome) for the special case
in which a target is viewed exactly normally, and the projected target is rendered as a circle. However, in general, the
projected target will be rendered as a tilted ellipse, which requires the use of special functions (so-called elliptical
integrals). These are much more difficult to implement than the polygonal scheme described here and would be
slower during actual computation.

IV. Use of the Search Templates
In a sense, Section III concludes the presentation of previously unpublished results on the implementation of

augmented template matching. However, the main results from Refs. 2 and 3 are summarized below, so as to
illustrate how the templates from Section III are used in practice. First, observe (see Fig. 9) that there are ten possible
cross-correlation sums between the three members of the augmented template (the sets of numbers f0, fu, and fv

from Figs. 4 and 5) and the image feature from Fig. 3 (the “scene”), which is denoted here by the matrix of pixel
values g. Each of the ten sums from Fig. 9 is calculated according to the formula

SAB ≡
∑
p,q

[A(p, q) − 〈A〉] [B(p, q) − 〈B〉] (11)

where both A and B can represent either f0, fu, fv , or g and where the angle brackets denote average values across
the template. (In Fig. 9 and below, subscripts f, u, and v on S denote the template terms f0, fu, and fv respectively.)

In conventional template matching, only three of the ten correlation sums from Fig. 9 are used (those from the
lower part of Fig. 9). In this conventional scheme, the template is stepped across the scene in increments of one
pixel in both directions until a point of maximum normalized correlation is found. This normalized correlation is
defined as

Jfg(�p, �q) ≡ S2
fg

Sff Sgg
(with 0 ≤ Jfg ≤ 1). (12)

Fig. 9 Correlation sums arising in conventional and augmented template searches.
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Here �p and �q denote the integer-pixel shifts between the initial position of the template and the trial positions
for which the normalized correlation from Eq. (12) is evaluated. Perfect correlation (with Jfg = 1) cannot normally
be obtained in this manner, even in the absence of noise, because the required shift of the template would require
noninteger values of �p and �q. This is where the augmented template technique comes in. Once a point of maximum
correlation is found for some set of integer shifts �p and �q, a subpixel centering refinement can be calculated from
the augmented template terms by solution of the linear system(

Suu Suv

Suv Svv

) (
�u

�v

)
= Sff

Sfg

(
Sug

Svg

)
−

(
Sfu

Sfv

)
(13)

This yields the required subpixel centering refinement (�u, �v), which, when combined with the previously estab-
lished integer shifts �p and �q, yields a more accurate determination of the center of the registration target in the
image. A further refinement may be obtained by recalculating the search template at the newly found position, and
solving Eq. (13) anew. For further details on the derivation of these results, as well as the theoretical and experimental
study of the uncertainty of the resulting registration scheme, the reader is referred to Refs. 2 and 3.

V. Conclusion
The image registration algorithm that is shown schematically in Fig. 2 has been used extensively as the enabling

step for automatic processing of thousands of PSP images from AEDC’s 16-ft Transonic Wind Tunnel.1 Detailed
performance results of the template-based search algorithms are documented in Ref. 3. Use of the augmented template
technique typically results in 99% or more of visible registration targets being found correctly, with a root-mean-
square uncertainty on the order of 0.05–0.10 image pixels.3 Both the success rate and the centering uncertainty
of the template-based scheme are a notable improvement over an earlier scheme that relied on blob finding and
centroiding.14 In particular, the difficulty of identifying, for each target individually, appropriate threshold levels
(to distinguish the target from the surrounding background) is avoided altogether in the template-based scheme.
Moreover, the template-based scheme is very unlikely to lock onto spurious image features in the vicinity of the
sought-after target. Lastly, the performance of the template-based scheme is not particularly dependent on the size
of the registration targets, so long as they are rendered with reasonable contrast in the image at a diameter of two
or more image pixels. This allows relatively small registration targets to be used (a diameter of a few image pixels
is adequate) in those applications in which the goal of the measurement is to map the surface of the test article as
completely as possible, as is the case in PSP testing.
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